

Learning Fair Cooperation in Systems of Indirect Reciprocity

Jacobus Smit¹ Fernando P. Santos¹

¹Socially Intelligent Artificial Systems, University of Amsterdam

UvA

Model

- Every agent has two visible characteristics: a **static tag** indicating membership to one of **two groups** and dynamic reputation determined by the social norm of the society.
- 2. Agents **interact in pairs** with randomly chosen roles: the **donor** can **choose to pay** cost c to confer benefit b to the recipient.
- 3. The donor's **strategy** may discriminate based on the relation between their and the recipient's tags (same or different) and the **recipient's reputation** (good or bad). 4. After interacting, the **social norm determines the donor's new reputation** based on the action taken and the relation/reputation context.

5. Over time, the **average reputation** of a group **converges** which we use to find the **average payoffs** of each group.

There are 8 possible combinations of 3 bits of information (action + context), hence a norm is an 8 bit vector, and there are therefore **256 possible norms**.

Stability, Cooperation, and Fairness

- We assume the **norm is fixed**, and each group all plays their own strategy. We borrow **stability** from evolutionary game theory, which means that no other strategy can outperform the incumbents of either **group**, and so strategic mutations are erradicated.
- The **cooperativeness** of a society is the probability of cooperation in an **arbitrary interaction**.
- We use **demographic parity ratio** as our definition of fairness: the ratio between the payoffs of the better and

Group (Donor) Group (Recipient)

Fairness and cooperation are achievable given the right combination of social norm and strategies.

worse performing group.

Multi-agent Reinforcement Learning

The Q-table is a 4×2 matrix. Agents learn policies with modified Q-learning:

- No future rewards term as agents require too much information to accurately predict them.
- Corresponding Q-values are decayed in every **interaction**, regardless of an agent's role. The relevant Q-value is the **last action taken as a donor**.

The norm decides which policies are learnable in practice with multi-agent RL (majority-group strategies plotted).

Paper and code

